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Axisymmetric, Self-Excited Oscillations in Parachutes

Bryan W. Roberts*
University of Sydney, Sydney, Australia

The paper derives the conditions under which self-excited, ‘breathing’ oscillations can exist in
parachutes. The ‘breathing’ phenomenon is shown to be dependent on seven parameters. These pa-
rameters include the Froude number, the rigging line length to canopy length ratio, the steady drag
coefficient, and the rigging line stiffness number. When a parachute is unstable in the ‘breathing’
mode it can be shown that the descent velocity fluctuations at the parachute store always lead the
canopy fluctuations by exactly (r/2) rad. The paper concludes by stating the conditions that are
necessary to ensure that a particular parachute will be stable in the ‘breathing’ mode. The system
will always be stable if certain aerodynamic derivatives are related in the following manner. That

is, for absolute stability

1’/110}\43 (]\711 — 1\74) < 0, when ‘M4 = 1M11

Nomenclature

C = unsteady drag coefficient

dy = total damping inherent in the lines

g = acceleration due to gravity

h2 = focal length of the approximating parabola
H = dimensionless form of h

Kr = total stiffness of the rigging lines

L = length of the canopy from apex to skirt

L’ = rigging line length

M = mass of the store

p = pressure on the parabola’s surface

V, = steady decent velocity of the parachute

¢ = phase of the drag perturbation

& = avelocity potential

u = dimensionless descent velocity perturbation
n = dimensionless distance in the F-plane?

© = phase of the velocity perturbation

e
<

= dimensionless breathing frequency

I. Introduction

IT is often observed in certain parachute systems that the
projected or inflated area of the parachute varies periodi-
cally in time. This phenomenon is often described as
parachute “breathing”” or “pumping” and is characterized
by a periodic symmetric variation in the parachute’s
flying diameter.

Stevens and Hume? in a recent paper have made obser-
vations relating to conventional man-drop parachutes of
the solid canopy type. They have observed, apart from the
pendulum-type oscillations, that certain canopies ap-
peared to ‘“breathe” more violently than others. Further-
more, they found that the ‘breathing” frequency ap-
peared to increase linearly with the mean descent speed of
the system. (See, for instance, their Fig. 12 of Ref. 1).

In addition, they noted that “where the amplitude of
the fluctuations in the descent velocity were high, the
breathing and descent velocity fluctuations were strongly
coupled. The coupling was not only in frequency but also
in phase. The maximum velocity of descent appeared to
occur about /2 rad later than the minimum diameter of
the canopy mount.”

These authors, however, have made no examination of
the mechanics relating to these self-excited, ‘breathing’
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oscillations. The current paper is intended to predict from
a theoretical basis that an instability can exist for a cer-
tain range of the appropriate parameters. Furthermore, it
will be shown that when the system is unstable, the first
harmonic velocity fluctuations at the parachute store do
(as observed by Hume and Stevens) lead the first har-
monic fluctuations in canopy diameter by exactly (x/2)
radians.

II. Brief Dimensional Analysis of the ‘“‘Breathing’’
Problem

In a dimensional study of the “breathing” phenomenon
it will be assumed that the canopy has an average mass of
p. per unit of surface area and that the rigging lines below
the skirt have a mass per unit of length of p,.

Furthermore, it will be assumed that the canopy mate-
rial is inelastic and nonporous, and that the canopy is at-
tached to the store by a large number of rigging lines of
length L’, whose total stiffness is Kr. The effect of porosi-
ty can be included, as will be seen later, by suitably mod-
ifying the steady drag coefficient.

If the above system were to descend with complete sta-
bility at a velocity of V, in an atmosphere of density p,
under a gravitational field g, then, in the absence of com-
pressibility effects and neglecting any change in the vis-
cous effects (that is Reynolds number is invariant), any
self-excited “breathing” oscillations will occur at a funda-
mental frequency of w. This oscillation will also produce a
fundamental velocity variation on the store of V.

It can be asserted that

w=AV,L,p, g Ky, dy, M,L’, p., p,)
and
Ve=hn(V,,L,p,8,Kp,d,,M, L, p, p,)

If V,, L, and M are chosen as the intrinsic variables
then it follows that
a9

- (9L :f<£’ v oevSiLr pvlL dy
v TNL’ gL’ Mg Ky’ pV, L2’

Pe Py
pL’ pL?

and
. royr 2 r2y2 2
(Vs/V):hl(L,‘L, PV, L p‘oL’ dr Pe _p_r_)
o L’ gL’ Mg Ky ’ pV, L2’ pL’ pL?
Therefore, it is expected that any ‘breathing’ phenome-

non in a particular type of canopy will be simply a func-
tion of seven parameters. These parameters are
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a) rigging line length to canopy length ratio, L’ /L

b) Froude number, V,2/gL

¢) steady drag coefficient, p V,2L? /Mg

d) line stiffness number, pV,2L/Kr

e) line damping ratio, dr/pV,L?

f) canopy to atmosphere density ratio, p./pL

g) line to atmosphere density ratio, p,/pL2.

It now remains to postulate a theoretical model involv-
ing these seven parameters.

III. Unsteady Pressure Distribution on a ‘‘Breathing”
Canopy

The unsteady pressure distribution on an impervious
canopy can be derived using the method detailed in a pre-
vious paper on parachute inflation dynamics.2 It is in fact
useful to point out that the inflation-deflation of the cano-
py occurring during a “breathing” oscillation is a special,
steady-state solution to the general problem of parachute
inflation.

Proceed generally according to Ref. 2 by approximating
the canopy to a parabolic shell of revolution having a focal
length of h2, where h is a function of time. It may be seen
in Fig. 1 that this parabolic approximation to the canopy
shape is satisfactory for parachutes in a symmetric
“breathing” mode.

The pressure on the canopy surface may be calculated
by deriving the velocity on the surface of the body in the
F-plane.2 This velocity in the F-plane, Vp, is comprised of
two parts. The first part is due to the unsteady freestream
flow, uV,, approaching the canopy, where the dimension-
less freestream velocity, g, is a function of time only.

The second contribution to the flow in the F-plane is
due to a vortex sheet buried in the inflating (or deflating)
parabolic shell. Hence by addition, the total velocity, Vg,
on the parabolic surface in the F-plane
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Fig. 1 Steady flying shape and steady pressure distribution
L'/L=2H=179.
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AN A 11_1( v, )

(V,m) a u<1'00> - dr \V,a (1)
where the functions (V. /V,a) and (V,/V,a) are set out in
Ref. 2. Therein, it can be seen that the terms contributing
to Vi are functions of i, n, H, and dH/d7.

The F-plane velocity may be used to calculate the ve-
locity on the parabolic surface in the Z-plane by multiply-
ing Vr by (dF/dZ x dF/dZ)1/2. Hence the total velocity
on the surface in the Z-plane is

V,\ (dF _ dF\'/? Vi di (v,
<V0> - <dZ “ @z ) [“<V0a> G <Voa>] @)
where (W/dZ X dF/dZ)Y/2is a function of n and H.

Before one can write the unsteady Bernoulli equation it
is necessary to find expressions for the disturbance poten-
tial on the surface of the parabola. Again, this disturbance
potential consists of two parts. The first part is due to the
unsteady freestream flow, while the second part is due to
the vortex sheet buried in the parabola. It has been

shown? that
(I)FY . q)m il—{ (bv >
voat “(V{,N) T <V0(12 ®)

where ($,,/V,a?) and (¥,/V,a2) are as functions of  and

Equations (2) and (3) can be substituted into the steady
Bernoulli equation whose general form in a moving frame
of reference is

p=po— p[a—;;—i - VXV, + 1/Q(vlcpi)?il 4)
The term p is the pressure at a point on the parabola’s
surface p_ is the static pressure at infinity (here taken as
zero), and $4 is the disturbance potential, and V4 relates
to spacial gradients in a moving frame of reference located
in the focal point of the parabola.
With some algebraic work it can be shown that Eq. (4)
gives pressures on the surface of the inflating/deflating,
accelerating /decelerating parabola of the form

L) - ()
LHpVE T /)i Vil AT \V,a

e *%{8(77 2 <£ ),dH}z

- cos 9 T ) a
() el - RN

where
cos 8 = 4[(n - ")/ 1160y — ) + H2}| )

For convenience of subsequent work we will partition
the right-hand side of Eq. (5) into four parts such that

)\ d d, dH [ &,
Ty *#<f>d—r [“(Vﬂ) tar (x’naﬁﬂ ™

o= 17/2 (8)
S e T

dF _ dF\'"? Ve dH { Vv, \?

T :<dZ x d_7> /2 [“(Vaa> i F("oaﬂ (10)

The form of the solution to Eq. (5) under steady flow
conditions may be seen in Fig. 1. In the case shown ¢ = 1
and all time derivatives are zero. Shown as an insert to
Fig. 1 is the pressure coefficient distribution for the case
H = 1.79. The pressure tends to —« as S/L tends to
unity, but it has been arbitrarily assumed that C, = 0 at
the tip, and that C, decreases linearly to the potential so-
lution in the range 0.94 <7 < 1.0.
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Fig. 2 Steady flying diameter.

The main section of Fig. (1) relates to a sectional eleva-
tion of the flying parabolic shell of revolution under the
action of the pressure distribution shown in the insert.
Under the conditions depicted, that is when L’/L = 2, the
moments of all external forces on the parabola are zero.
So that under steady flight conditions, when the moments
about the apex are zero, H is uniquely determined as H =
1.79 when L’/L = 2.0. Of course, as the lines are short-
ened the steady value of H is reduced and the pressure
distribution is slightly modified. In fact, in Fig. 2 is shown
the variation of the steady flying values of H, namely H,
for various values of L’/L. For all the cases in Fig. 2, the
moment of all the external forces on the parabola are zero.
Thus Fig. 2 effectively determines a series of unique
values of H for a range of the variable (L’/L).

Returning to Egs. (7)-(10) under time-varying condi-
tions it may be seen that terms 7 and T3 have no contri-
bution to the drag force or moment about the apex of the
parabola. This is because both T3 and T3 are even func-
tions of  about the n = 14 position. Thus, by integration
of the first and fourth terms (737 and T4) of Eq. (5) one
can find the unsteady drag coefficient and the unsteady
moment coefficient about the apex.

Before completing these two integrations we will deter-
mine the various aerodynamic pressure derivatives associ-
ated with terms T and T4 in Egs. (7) and (10).

IV. Unsteady Pressure Derivatives

The pressure derivatives associated with the terms T,
and T4 in the “breathing” mode may be found as follows.
Define a typical “breathing” oscillation of the form

H=H +H, +H, cos Q7 + H, cos (22 + a,) + -~

(11)
where only the constant and fundamental frequency terms
will be examined herein. Because of the “breathing,” the
freestream velocity variation will be of the form

w=p, + i cos@7 + 6,) + 1, cos(2Q1 + 6,) + -~

12)
where the constant term u, and the fundamental frequen-
cy terms fi; and 64 have yet to be determined.
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Equations (11) and (12) may be substituted into Eq. (7)

to give the first term T as
I8 - (e
h="plam \va) " \&) “su\V,e

dH _ 8 [ &, gﬁ( <I>m>}
T Xgﬁ(Voaz) tar V,at (13)

A series of A-coefficients may be defined corresponding to
the various terms in (13) such that

2
¢v
Az*fVan
2
_a e,
A =TT =

a 9 &,
As :faﬁ(—’ma ): 24

The variation in the pressure coefficient, C,, about its
steady flow value can now be arranged in order of like
time coefficients. Thus one obtains

Constant Variation
C, = AQPH?® ~ AguQH, sing, (14)
CosQ7 Variation (In Phase)
C,, = A2 H) + A8, sinb (15)
SinQ+ Variation (Quadrature)
C,, = Ay, QH; + ARl cosb, (16)

Next, similarly treat the fourth term, T4, of Eq. (10) such
that

dF _dF\!/? V.o \?
s — — — —
Ty = (dZXdZ) /2[<“Va>
dHN\? f VvV, \? % 1%
- —— — S v
(%) (7) ~zosxas]on

One can somewhat reduce the nonlinearity of Eq. (17) by
making (dF/dZ X dF/dZ)1/2 a function of 5 only.

(z—zfx j—g) Y (18)
Continue by defining a series of D-coefficients such that
D, :%’7)—‘—‘}: = Dg/2 = 2D,
D :%n) {a% (Vlé) }2
Dy = f%n_) xr;
o -l (5) i } o0

Similarly the D-coefficients produce a variation in the
pressure coefficient as follows
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Constant Variation

Cp = — Dl“’o2 — D7ﬁ12 605261 - Dzuozﬁ 12

4
- D8“’0ﬁ1 00591ﬁ1

~ D,Q*H,? — D,fi;® sin®6, + Dyu, sin6,QH, (19)

CosQr Variation (In-Phase)

C,, = — Dgit, i1y cosby — Dy, Hy (20)
SinQr Variation (Quadrature)

Cy, = = D5, QA + Dyps, 1y siné, (21)

By addition of the like coefficients in Kqgs. (14-16) and
(19-21) one obtains the total variation in the pressure on
the surface of the “breathing” parabola. It should be
pointed out that as yet we have not calculated the form of
the freestream velocity fluctuations as defined by Eq.
(12). This calculation will now be performed in Sec. V.

V. Moment Criterion

In Sec. IV expressions have been found for the periodic
variations in the pressure coefficient at the surface of the
palpitating canopy. Implied in Egs. (11) and (12) are a
total of seven unknowns; namely H, H,, H1, Q, po, i1, 61-
The first of these unknowns can be immediately deter-
mined from Fig. 2 once the value of L’/L is specified. In
this section we will use three moment equations to solve
for H,, p1, and ¢4, while the remaining variables namely
H,, Q, and uo, will be found in a subsequent section.

To solve for H,, fi1, and 6y it will be asserted that the
moments of all external forces on the canopy will be zero
at all times. The apex will be chosen as a convenient ori-
gin for finding the external moments. In other words, the
integration of the unsteady pressure distribution about
the apex will be zero when due allowance is made for the
mass of the canopy and the closing moment due to the
rigging line tension.

In mathematical terms it follows that+

2048 [ C,(1 - 2n)(n — 1) 2
+ 256H7 [ C,(1 — 2n)n — n*)! 2dn
(22)
—128H{(4d’/L + L'*/L* —164*/L*H")!/?}
(L7217 = 164/ LIH2) /2

1
x [0 C,(1 ~2n)dn + M, =0
where the integrals of like coefficients throughout Eq. (22)
will be all simultaneous zero. For example, if we define an
integral operator I3 such that
1
I(x) = 2048 _{0 x(1 = 2n)(n — ) dn
+256 A [ x(1 - 2n)(n — 1) /dn (23)

-128H%4d2/L + (L*/L? —164*/L°H
(L7/L? — 164" /L2A )1 /2

231 /2
) }foi x(1 - 2n)dn

thent

+Mm 1is the inertia moment due to a finite mass of the canopy
and lines.
M6 1s the inertia moment coefficient.
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Table 1 Numerical values of M- or N-coefficients

Mor N
Coeffie Value
gent L'/L =1 L'/JL=2 L'JL =3 L/L=4
M, —~18.4 —23.05 —24.9 —26.7
M. —95.4 —&87.1 —75.5 —68.1
M 41 .4 74.4 93.4 109.2
M, 26.0 32.5 35.1 37.7
Ms 41.4 74.4 93.4 109.2
Mg 13.0 16.3 17.6 18.8
M, 0 0 0 0
My 0 0 0 0
M, —159.9 30.6 56.4 47 .8
Mo —120.0 —45.6 —34.7 —35.4
um —123.1 —-14.1 48 .5 89.1
M, 0 0 0 0
M, 0 0 0 0
My 0 0 0 0
M —61.5 —7.05 24 .25 44.5
N, 1.11 0.83 0.706 0.645
Ne 5.73 3.15 2.14 1.65
N3 —2.49 —2.69 —2.65 —2.64
Ny —1.56 —1.18 —{0.997 —0.911
Ns —2.49 —2.69 —2.65 —2.64
Ng —0.782 —0.589 —0.498 —0.456
N —3.21 . —3.04 —2.77 —2.54
Ny —0.133 —0.087 —0.067 —0.055
Ny —14.5 2.22 3.44 2.66
Nio 0 0 0 0
Nu —17.4 —3.46 2.14 4.91
Nig —6.42 —6.08 —5.54 —5.08
Ny —1.60 —1.52 —1.38 —1.27
Ny -0.92 —0.73 —0.61 —0.53
Nis —8.70 —1.73 1.07 2.45
11(Cp0) =0 (24)
11(C,,0) + MS8PH, = 0 (25)
Il(Cps) =0 (26)

Therefore, the three equations, Eqs. (24)-(26) inclusive,
may be solved for the three unknowns H,, &1, and #1 by
substituting Eqs. (19)-(21), respectively. The appropriate
coefficients, defined as M coefficients, appear in Egs.
(27)-(29), and their numerical values are shown in Table
1. After the appropriate substitutions described above one
finds that

Constant Moment Variation
MQPH — My, QH, sinfy — My, — M3 cost,
My 2 — My, 0yH 6, — MQH," — My,fi, sin’e
gHo 11y 1alo ety COSOy — Mgse™ty” — Myglly SIN"04

+ Ms{1,2H, sinéy — Mo, H, =0 @7

CosQr Moment Variation
MQPH, + MQ i, sin, — Myyp1, 1ty cOSH,
~ My, 2Hy + MgQ%H, = 0 (28)
SinQr Moment Variation
M4uOQ};’1 + MzQ iy cosby — M“uoﬂﬁl
+ Myypu,dy sinf; =0 (29)

The values of the M-coefficients for four values of L’ /L
are shown below in Table 1, and the value of Mg will be
taken as zero.
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Fig. 3 Velocity fluctuation as a function of frequency.
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Fig. 4 Phase of the velocity fluctuations.

We will not bother with the formal solution of Eq. (27)
because the variable H, follows immediately once values
for ug, fi1 etc. are known. In any case H, will be small as
Eq. (27) contains products of small quantities throughout.

Now Egs. (28) and (29) can be divided by poH1 and the
zero M-coefficients substituted to give

Q 2
0 M, — Mo (— )
My X sinfy = Iy T\ (30)
H0H1 Q
]\/13-*
and Ho
Ay My — My
7 cosfy = —L 1 (31)
Hofly ! My

From Eq. (30) and (31) the values of ({i1/poH1) and 61
can be found as functions of Q/u¢ and L’/L. The values of
these dependant variables are shown in Figs. 3 and 4 and
it is only this form of (&1/uoH1) and ;1 which will ensure
that the external moments about the apex are zero at all
times. In Fig. 3 it may be seen that (i1/uoH1) has mini-
mum values in the vicinity of (/uo) equals 0.7, and that
here is one value of (L’/L) which gives i1/uoH1 equal to
zero. The next step in the analysis is to examine the drag
integrals, and thereby determine unique values of (Q/u,)
for which steady-state ‘breathing’ oscillations are possible.

VI. Unsteady Drag Force

Equations (14)-(16) and Egs. (19)-(21) may be added
and the result integrated to determine the unsteady drag
coefficient of the ‘breathing’ parachute.

Define a drag coefficient, C, such that

J. AIRCRAFT
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Fig. 6 Phase of the drag force variation.

C=C+C, +C, cos(@ + &)
+Cycos22 + ) +. . . (32)

where only the constant and fundamental frequency terms
will be considered hereafter.

Next it is possible to define in drag coefficient integral
Io(x) such that

Lx) = ['x(1 - 2n)dn, (33)

and then the like pressure coefficients when integrated
according to Eq. (33) will equal the like coefficients in Eq.
(32). Thus one obtains

C+C,=1hl(C,) (34)
0
Cy cosdy =1,(C, ) + Ny iy sind, (35)
C
— Cl Sintbl = Iz(cps) + N169ﬁ1 C0591 (36)

Equations (34)-(36) may now be expanded to give Egs.
(37)-(39), where the N-coefficients are also shown in
Table 1.

Constant Drag Variation

C + C, = NyQ®H,* = Nyj1;QH, sinf, — Nyp1,*
— Nyafiy* 08’6y — Nyp,"Hy® — Nyyps, 14Hy cosy — N Hy?
— Ny3f34% sin®6; + Nys1,QH, sin6; — Nyou,2H,  (37)

o

§Ni6 is the inertia drag coefficient due to a finite mass of the
canopy and lines.
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CosQr Drag Variation

CAi 0054)1 = N292H1 + N3Q’.I1 Sin91 —N12ﬂ0ﬂ1 00591
+ Nyoit,lHy + NygQfiy sing;  (38)

SinQr Drag Variation

—01 Sin(b1 = N4[.Loﬂﬁ1 + NSQﬁl 00591 —N|1H09ﬁ1
+ N12H0ﬁ1 Sin91 + NlGQﬁl ".“70591 (39)

Now Egs. (38) and (39) can be solved for (C1/uo2Hy) and
1 using the values of (41/uo2H;) and 6y from Figs. 3 and
4 where required. The values of (Ci/uo2Hi) and ¢y are
shown in Figs. 5 and 6.

In the case of Eq. (37) it may be seen that C and Cy are
included as a summation. However, it is known from the
form of Eq. (37) that C = —N7 and that C, = N{ze2 — 1)
plus the remaining terms in Eq. (37). We will not bother
at this stage to calculate C,, but an interested reader
could verify that C, will be small.

VII. Kinematic Description of the Motion of the Store

It is at this point that the velocity of the store will be
calculated using Fig. 7. It will be noted that we have ex-
pressions for fi; and 64, but the velocity of the store will be
somewhat different to 41, the velocity of the canopy, due
to rigging line stretch in combination with a change in the
canopy diameter via the parameter Hy.

A. Velocity of the Store Due to the dH/dt Term

In Fig. 7 a point C at the canopy skirt is moving down-
wards at a velocity uV, and outwards at a velocity of V,
where V. is given below.

d(4a*H)  d(4d’H) _ dH
Vet =0r— = "am @ (40)
Therefore, by addition, the velocity of the store, Vi is
Vo=V, -V, (41)

where Vs is calculated by taking I.; as an instantaneous
center. Thus after some algebraic work it can be shown
that

_ &)if_’
vV, = x(L ¥ +uv, (42)

where x is shown in Table 2 and is defined by Eq. (43)

A\
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Fig. 7 Kinematic model of the parachute.

SELF-EXCITED OSCILLATIONS IN PARACHUTES 741

Table 2 Values of x

Function L'/L =1 L'/L=2 [L'/JL=3 L'/L = 4
L 0.317 0.064 0.023 0.016
T 2.00 1.23 1.10 1.06
2 217
x = 4d(a H)X 4a°H 1/2 (43)

dH (L —164°H?)

B. Velocity of the Store Due to Line Flexibility and Internal
Line Damping )

Referring to Fig. 7 it may be seen that another velocity
perturbation at the store is due to line flexibility and line
damping, Kr and dr, respectively. Under the action of a
drag force variation at the fundamental frequency, Q, the
lines will deflect by an amount e. This line extension e
will cause the store to move downwards by an amount p.
One can write the equation governing the line deflection
as

i(.

7 Tdt

where @ = 8wpatH?2.
From geometric consideration it is known that

p = € secpB (45)

Kre +d = QV,2C, cos(QT + ¢,) secB,  (44)

and substitution of Eq. (45) into (44) gives

Krp + dpdp/dt = QV 'Cy cos(@T + ¢,) sec’s  (46)

To solve for p, let p = py cos (27 + ¥41) and substitute
into Eq. (46) to give

b= LV Lo s cos@r +0y) (D)
ot - aie ()
where
d = by —tan"! [dIT{ZOLQ] (48)
and
T = sec’f = (—L—,Z—:If—;;;-a-@—z—) (49)

Finally, Eq. (47) can be differentiated with respect to
time to give

V,, = dp/dt
3 QTV2C,Q
1/2
{KTz +d 200 (%)2}

where the values for T are given in Table 2.

sin(Q@7 + ¥)  (50)

C. Absolute Acceleration of the Store

First, the absolute velocity of the store is simply the
sum of Vg1, Vo, Vi3; therefore

Ve=uV, +x (%) th sinQd 7

TQV,'QC,

2
{-KT? +d 0 (%) }

Second, the absolute acceleration of the store can be
found by differentiating Eq. (51) to give

o Sin@ + ) (51)
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dv Vﬁ Q
_(i—§ = (rL Qu'l Sln( T + 9)
v,2 v}
+ (gz > QHl cos§iT -T(gL>
% QV,} Q¢

KqL a + dTZQzV 2)”_2_
KT2L2

cos(@7 + &)  (52)

VIII. Store Kinetics

The final step in this treatment of the ‘breathing’ prob-
lem is to satisfy the equation of motion of the store. New-
ton’s second law may be applied to the store to give

14
dd‘fs = Mg — 87V, pa'H*{p,( (C+cC )

+Cy cos(@7 + &)} (53)

M

Equation (53) can be nomialised by dividing through by
Mg, and by defining a variable Q as before. It then follows

from Eq. (53) that
l({(li§8> :1_2___{u (C +c¢,) +C cos(Q7 + o)}
N (54)

Equation (52) can now be substituted into Eq. (54), and
like coefficients equated to give

Constant Force Variation

I
(%) pHE +C)—1=0 (55)

CosQr Force Variation
v,2
gL

r2 g
@V, ¥ C1 cos(dy —

[ Q14 sinb; — fKL -

N AN
+ (x/L)QzHI-'] + <QI\/‘Ig ) ¢, cosd; =0  (56)

SinQr Force Variation
v}

gL

")
[ Q1 cosb; + T(;)( 13 —C sin(d, — 6)]

(QV ; )c1 sind, =0 (57)

d QQ'ZVZ 1/2
n = {1 + T—r’zl}
KL

g =tan[dV,Q/K L]

where

and

It should be noted that C = Mg/QV,2, and that C = =Ny
as noted earlier. Therefore, from Eq. (55) uo can be calcu-
lated. However, . will be of the order of unity, and we will
not bother further with solving explicitly for u,.

From Eq. (56) and (57) it is possible to solve for (V,2/gL)
and Q once the line stiffness parameter (QV,2/KrL) and the
line damping parameter (d7/pV,L2) have been specified.
These solutions (as functions of the Froude number, and the
reduced frequency parameter) will be the conditions for
which steady-state breathing oscillations may exist.

J. AIRCRAFT

IX. Solutions to Egs. (56) and (57) for Zero Line
Damping

The simplest solution to these equations is when the
damping parameter is absent. Thus, for the moment as-
sume thatnp=1,8=0.

A.Particular Solution with Zero Line Damping

A particular solution to Egs. (56) and (57) occurs when
sin$; = cosf; = 0

so that Eq. (57) is automatically satisfied. From Fig. 4 it
can be seen that 6§y = +x/2 when (L’/L) = (L’'/L)* =
2.70. The asterisked values refer to the steady-state,
“breathing” conditions. It should be noted that this con-
dition for #; is automatically satisfied for all values of
(2/1o)- Thus (@ /p,) is at the moment left open.

From Fig. (6) it may be seen that ¢4 = 0 when (Q/u,)*
= 0.640 and (L’/L) = 2.70. Therefore, Eq. (57) is satisfied
when

(L'/LY* =2.70
©Q/p)* =0.64

Next, turn to Eq. (56). For the asterisked conditions it
can be found from the previous work that
{(84/ 15, 717) sinéy}* = —0.12
and
{(Cy/ p, Hy) cosd}* =0.65
These latter values can now be substituted into Eq. (56)
along with the appropriate values for (x/L)* and T* to
give
Ny =1.76/{2.35(u,2N,) -1} (58)
where
Ny, Froude Number = (V ?/gL)*
and

N, Line Stiffness Number = (QVOZ/KTL)
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Fig. 8 Stable phase relationships.
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Fig. 9 Unstable phase relationships.

From Eq. (58) it is possible to construct Fig. 8 where it
may be seen that steady-state “breathing” oscillation can
only exist when the conditions along the upper curve of
Fig. 8 are satisfied. Conditions differing from the curve

will be damped due to aerodynamic terms inherent in Eq.
(57).

B. General Solution for Zero Line Damping

The general solution to Eqgs. (56) and (57) can be best
determined by taking all the ¢; terms to the right-hand
side of their respective equations, and then dividing Eq.
(57) by Eq. (56). In this manner it can be shown that
steady “breathing’’ can only exist when

d){ = Y1 (59)
where

. — tap-! '(LI1/MQI;1) cosb,
A [(ﬁl/uofm Sing, — (X/L)(Q/uo)] (60)

The ¢1 and v, functions are shown in Figs. 9 to 10 for the
cases L'/L = 2, 2.1, respectively. In all cases, except the
case L’/L. = 2.70, there is no steady solution. Yet when
L’/L = 2.70, the only solution is the particular solution
already discussed in Sec. VIII. One can therefore conclude
that in the zero line damping case there is one unique so-
lution corresponding to vy = 0, which is equivalent to the
case iy = w/2.

X. Broadening Effect of Line Damping
A.Particular Solution for Finite Damping

The conclusions reached in Sec. IX-A above will now be
modified to include the case of finite rigging line damp-
ing. One can proceed by seeking a solution to Egs. (56)
and (57) when 5 and 8 are both nonzero and positive. 8
will be taken as small.

In this case it will be realized that f; and fi1/uoHy will
be unchanged, while ¢; and Ci/uo®H: will adopt new
values. With these notions one can write that

cosf; = 0, as before,
n =1
sind; = ¢,
sin =~ 3
and
(©/u,) =~ 0.64

provided 3 is small. Therefore, Eq. (57) may be written as
1
- 201 + TN(N,H)(0.64)% {6y — Bt = 0 (61)

If we now consider a small perturbation A(Q/u,) in (£ /u,)
due the inclusion of the 8 term then

Fig. 10 Froude number to cause ‘‘breathing.”’

1 %
cal@/1,)

+0.41 TNF(NSHOZ){EZ%MQ/%) - ;3} 0 (62)

Hence it follows that

A/ 1)

N
A(Q/Ha) = 8®10°41TNF(NSLL0 )B - 1
0.41 7 - =
8(9/“0){ TNF(ASU'G) C}
~ B

B { EI)) } (63)
3/ u,)

Turning now to Eq. (56) with the appropriate approxima-

tions and substitutions it can be shown that

Ng{0.64 x 0.12 + (x/L)(0.64)*}
—0.41 TNy (N,/12,1)0.65{1 + tan¢,sing}
+ (0.65/C) = 0  (64)
and hence
. 1.76
NF = =
[2.35(1 + ¢B)p, 2N, — 1] (65)
From Eq. (81) is follows that

0.41 TN (N, D)3
d)1}3 _ F(l 5“0 )B 1 ~ B2 (66)
{0,41 TN (N, 1,2) — ?:}

One can now substitute Eq. (66) into (65) to give

N 1.76 67
Np* =
[2.35(1 + p2)p, N, —1]
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Fig.11 “Breathing’’ frequency.



-3
e
S

@
w
-
(]
2 N
a -H=02 1-2
>
3 2t e =l e} = —
Q ]
z o]
5 n g /- d o8
a H=2-08 > 3 (Y_cv)=|-o
) > S I RN
=N
¥ ot ?N";' 70 B S |+0-02aces(@T 1)
< (L/L);2 E z/.
2z 0, Veo
g (/}15)-064 v Q-2
z ) °
°s 5 1o o 5 10
NON-DIMENSIONAL TIME NON- DIMENSIONAL TIME
T T
-4
2t
>
[ 1'Ofc — — e — —
g 3 M yero H =02, (YD=2.70
. - - —
w 200 VRV (%Y. )= 0-64, H=2-05
& 5 |+0-108Cos(@T + ) ke,
g \>_/O4- NgHo =1, Ng= [-30
o2r d*/eV°L2=O
O i3
o 5 10
NON - DIMENSIONAL TIME

T
Fig. 12 A typical breathing oscillation.

Equations (67) and (63) are shown graphically in Figs. 8
and 11, respectively, as functions of the line damping pa-
rameter (dr/pV,L2). In Fig. 8 it can be seen that the ef-
fect of damping is to broaden the conditions for steady-
state “breathing” oscillations. Also included in Fig. 8 are
the experimental results from Ref. 1. In Fig. 11 the effect
of damping is to produce a slight upward shift in the
“breathing” frequency of about 10%.

B. General Solution for Finite Damping

When preparing this paper, it was felt that no positive
statement could be made as to whether the above particu-
lar solution, with damping included, was in fact a unique
solution to Egs. (56) and (57). It is preferred at the mo-
ment to leave this question of uniqueness open.

XI. Conclusions

The conclusions to be drawn from the above work are as
follows.

a) A ‘breathing’ parachute is essentially a two-degree-
offreedom system involving the vertical motion of two
masses. One mass is the virtual mass of the airflow about
the canopy, plus the mass of the canopy itself if it is sig-

B. W. ROBERTS
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nificant. The second mass is the store. Both masses are
connected by a series of slightly flexible rigging lines.

b) In this two-degree-of-freedom system, the zero fre-
quency or first mode oscillation, corresponds to the steady
descent of the parachute.

¢) The second mode of oscillation is in fact the ‘breath-
ing’ mode. This mode can only exist in the steady-state
when Eq. (31) is identically zero, namely when M, =
M11.

d) An additional constraint on the existence of a
“breathing” mode is that it can only occur at a particular
Froude number. This Froude number is determined
uniquely by two parameters, the line stiffness number and
the line damping ratio (see Fig. 8).

e) In the case of zero line damping the ‘breathing’ fre-
quency is given by

(_Q_)* _ ( NaMy, )1/2
Ko T \M,Ny, + My(Ny — Ny)

f) Line damping tends to increase the ‘breathing’ fre-
quency slightly (see Fig. 11).

g) Typical time variations of the canopy diameter, store
velocity and canopy velocity are shown in Fig. 12. In all
cases the canopy diameter phasor will lead the canopy ve-
locity phasor by exactly = /2 rad.

In addition, the store velocity phasor will lead the cano-
py diameter phasor by exactly =/2 rad. This latter phe-
nomenon has been observed in practice and is reported in
Ref. 1.

h) In no case was it possible to calculate the absolute
amplitude of the oscillations, namely H;. The absolute
amplitudes are limited by the nonlinearities in the sys-
tem, which are not included in the current theory.

1) All aerodynamic derivatives that have been used in
the calculation have been derived from a theoretical basis.
This has led to minor unrealities. For instance, the cano-
py virtual mass has been overestimated and the ‘breath-
ing’ reduced frequency is somewhat lower than that ob-
served in practice.

j) There is a need for an experimental determination of
the aerodynamic derivatives using realistic wake flows. In
this way more realistic values of (L’/L)* and (Q/p,)* can
be evaluated. It is essential that all the N and M coeffi-
cients be found experimentally.

k) The most effective means of ensuring stability is to
suitably modify the canopy geometry and/or airflow so
that M10M3(N11 — N4 <0when My = M11.
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